

Draw $B X$ perpendicular to AC.
Draw CY perpendicular to AD.
Draw XY.
Angle $B C A=180^{\circ}-35^{\circ} 10^{\prime} 23^{\prime \prime}-109^{\circ} 39^{\prime} 14^{\prime \prime}=35^{\circ} 10^{\prime} 23^{\prime \prime}$, making $A B=B C$ since triangle $A B C$ is isosceles, and angle $C B X=54^{\circ} 49^{\prime} 37^{\prime \prime}$

Angle $\mathrm{ACY}=60^{\circ} 00^{\prime} 00^{\prime \prime}$, making triangle XCY equilateral and $\mathrm{XC}=\mathrm{CY}$
Angle YCD $=130^{\circ} 20^{\prime} 46^{\prime \prime}-60^{\circ}-35^{\circ} 10^{\prime} 23^{\prime \prime}=35^{\circ} 10^{\prime} 23^{\prime \prime}$, so
triangle $B C X$ is congruent with triangle $C D Y, B C=C D$ and therefore triangle BCD is also isosceles.
Angle CDB is then $1 / 2\left(180^{\circ}-130^{\circ} 20^{\prime} 46^{\prime \prime}\right)=24^{\circ} 49^{\prime} 37^{\prime \prime}$

