In triangle $\mathrm{DAQ}_{1}, \mathrm{r}=\mathrm{FA} \cdot \tan \left(\mathrm{FAQ}_{1}\right)$ and $\mathrm{r}=\mathrm{FD} \cdot \tan \left(\mathrm{FDQ}_{1}\right)$
$F A=\frac{r}{\tan \left(F A Q_{1}\right)}$ and $F D=\frac{r}{\tan \left(F D Q_{1}\right)}$, but $F A+F D=A D$
$r \cdot \tan \left(F D Q_{1}\right)+r \cdot \tan \left(F A Q_{1}\right)=A D \cdot \tan \left(F A Q_{1}\right) \cdot \tan \left(F D Q_{1}\right)$, so $r=\frac{A D \cdot \tan \left(F A Q_{1}\right) \cdot \tan \left(F D Q_{1}\right)}{\tan \left(F A Q_{1}\right)+\tan \left(F D Q_{1}\right)}$
Let $A D=1$ and let $\tan (m)=t$
Angle DAE $=90^{\circ}-2 \mathrm{~m} ; \tan$ DAE $=\tan \left(45^{\circ}-\mathrm{m}\right) ; \tan \left(45^{\circ}-m\right)=\frac{1-\tan (m)}{1+\tan 45^{\circ} \cdot \tan (m)}=\frac{1-t}{1+t}$
$r=\frac{\frac{1 \cdot(1-t)}{1+t} \cdot t}{\frac{(1-t)}{(1+t)} \cdot t}=\frac{\frac{t \cdot(1-t)}{(1+t)}}{\frac{(1-t)+t \cdot(1+t)}{(1+t)}}=\frac{t \cdot(1-t)}{1+t^{2}}$
In triangle $D C B, C D=D E+E C=2 \cdot \cos (2 m)=2 \cdot \frac{1-\tan ^{2} m}{1+\tan ^{2} m}=2 \cdot \frac{1-t^{2}}{1+t^{2}}$
$\mathrm{r}=\mathrm{CG} \cdot \tan \left(\mathrm{GCQ}_{2}\right)$ and $\mathrm{r}=\mathrm{DG} \cdot \tan \left(\mathrm{GDQ}_{2}\right)$
$C G=\frac{r}{\tan \left(G C Q_{2}\right)}$ and $G D=\frac{r}{\tan \left(G D Q_{2}\right)}$, but $\mathrm{CG}+\mathrm{GD}=\mathrm{CD}$
$\mathrm{r} \cdot \tan \left(\mathrm{GDQ}_{2}\right)+\mathrm{r} \cdot \tan \left(\mathrm{GCQ}_{2}\right)=\mathrm{CD} \cdot \tan \left(\mathrm{GDQ}_{2}\right) \cdot \tan \left(\mathrm{GCQ}_{2}\right)$, so $r=\frac{A D \cdot \tan \left(G D Q_{2}\right) \cdot \tan \left(G C Q_{2}\right)}{\tan \left(G D Q_{2}\right)+\tan \left(G C Q_{2}\right)}$
$\measuredangle \mathrm{ACD}=2 \mathrm{~m} ; \measuredangle \mathrm{CAJ}=\measuredangle \mathrm{CJA}=90^{\circ}-\mathrm{m}=\measuredangle \mathrm{Q}_{2} \mathrm{JD} ;$ so $\measuredangle \mathrm{JQ}_{2} \mathrm{G}=\mathrm{m}$ and $\measuredangle \mathrm{Q}_{2} \mathrm{AH}=90^{\circ}-3 \mathrm{~m}$
$\mathrm{CQ}_{2}=\mathrm{AQ}_{2}$ and $\mathrm{Q}_{2} \mathrm{G}=\mathrm{Q}_{2} \mathrm{H}=\mathrm{r}$ so $\measuredangle \mathrm{Q}_{2} \mathrm{CG}=90^{\circ}-3 \mathrm{~m}$

$$
\tan \left(\mathrm{DCQ}_{2}\right)=\tan \left(90^{\circ}-3 \mathrm{~m}\right)=\cot (3 \mathrm{~m})=\frac{1-3 \cdot \tan ^{2} m}{3 \cdot \tan m-\tan ^{3} m}=\frac{1-3 t^{2}}{3 t-t^{3}}
$$

$$
\begin{equation*}
r=\frac{2\left(1-t^{2}\right)}{\left(1+t^{2}\right)} \cdot \frac{\frac{1}{t} \cdot \frac{\left(1-3 t^{2}\right)}{\left(3 t-t^{3}\right)}}{\frac{1}{t} \cdot \frac{\left(1-3 t^{2}\right)}{\left(3 t-t^{3}\right)}}=\frac{2\left(1-t^{2}\right)\left(1-3 t^{2}\right)}{\left(1+t^{2}\right)\left(4 t-4 t^{3}\right)}=\frac{\left(1-3 t^{2}\right)}{2 t\left(1+t^{2}\right)} \ldots \tag{2}
\end{equation*}
$$

Equating [1] and [2]: $\frac{t \cdot(1-t)}{1+t^{2}}=\frac{\left(1-3 t^{2}\right)}{2 t\left(1+t^{2}\right)} ; 2 \mathrm{t}^{2}(1-\mathrm{t})=1-3 \mathrm{t}^{2}$ and $2 \mathrm{t}^{3}-5 \mathrm{t}^{2}+1=0$ or $2(t-1)\left(\mathrm{t}^{2}-2 \mathrm{t}-1\right)=0$ from which $\mathrm{t}=1 / 2$ or $\mathrm{t}=1 \pm \sqrt{2}$ and $\mathrm{m}=26^{\circ} 33^{\prime} 54.2^{\prime \prime}$ and 135° Using $t=1 / 2, r=1 / 5 ; A E=\sin (2 m)=0.8$ and $D E=\cos (2 m)=0.6$

Angle $\mathrm{ACB}=$ angle $\mathrm{CAB}=180^{\circ}-4 \mathrm{~m}=73^{\circ} 44^{\prime} 23.3^{\prime \prime}$, making angle CBA $=32^{\circ} 31^{\prime} 13.6^{\prime \prime}$ AD must equal $A C$ for the symmetry to exist, so
$\frac{1}{\sin 32^{\circ} 31^{\prime} 13.6^{\prime \prime}}=\frac{A B}{\sin 73^{\circ} 44^{\prime} 23.2^{\prime \prime}}$ and $\mathrm{AB}=1.7857124$ so $\mathrm{DB}=0.7857124$

