
 
In triangle DAQ1, r= FA ⋅ tan(FAQ1) and r= FD ⋅ tan(FDQ1) 
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Let AD=1 and let tan(m) = t 

Angle DAE= 90°–2m; tan DAE = tan(45°–m);  
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In triangle DCB, 
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r= CG ⋅ tan(GCQ2)  and  r= DG ⋅ tan(GDQ2) 
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∡ ACD=2m; ∡ CAJ=∡ CJA = 90°–m = ∡Q2JD; so ∡ JQ2G=m and ∡Q2AH = 90°–3m 

CQ2 = AQ2 and Q2G = Q2H = r so ∡Q2CG = 90°–3m 

 

tan(DCQ2) = tan(90°–3m) = cot (3m)= 
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Equating [1] and [2]: 
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;  2t²(1-t) = 1-3t² and 2t³–5t²+1= 0 

or 2(t–1)(t²–2t–1) = 0 from which t = ½ or t = 1± 2  and m=26°33'54.2" and 135° 

Using t = ½, r= 1/5; AE = sin(2m)= 0.8 and DE=cos(2m)= 0.6 

 
Angle ACB = angle CAB = 180°– 4m = 73°44'23.3", making angle CBA = 32°31'13.6" 

AD must equal AC for the symmetry to exist, so 

1

sin32 31'13.6" sin73 44 '23.2"

AB=
° °

 and AB = 1.7857124 so DB = 0.7857124 
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