

First, draw the circumcircle with center at Q.
(Q will be at the intersection of the perpendicular bisectors of any two chords.)

Drop a perpendicular from C to $A B$.
Draw a line from C to Q and extend it to the circumference of the circle at D. Draw line AD. The angle ADC is equal to angle ABC since they subtend the same chord (AC) from a point on the same circle.

The perpendicular from C to $A B$ is equal to $B C \cdot \sin A$ and $\sin A=A C / D C$, making the area of the triangle $1 / 2(B C \cdot A C / D C) \cdot A B$. But $D C$ is twice the circumcircle radius which is found by
$r=\frac{a \cdot b \cdot c}{\sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}}$, where a, b, and c are the sides opposite vertices A, B, and C, respectively.

In this case, $\mathrm{r}=$

$$
600 \cdot 500 \cdot 700
$$

$\sqrt{(600+500+700)(600+500-700)(500+700-600)(700+600-500)}$
$=\frac{210,000,000}{\sqrt{(1800)(400)(600)(800)}}=357.21725$, and $C D=714.4345$
The area is then $\frac{600 \cdot 500 \cdot 700}{(2) \cdot 714.4345}=146,969.386$ square units.

